MATHEMATICS OF COMPUTATION
Volume 66, Number 218, April 1997, Pages 771-778
S 0025-5718(97)00814-4

ON SOME INEQUALITIES FOR THE INCOMPLETE
GAMMA FUNCTION

HORST ALZER

ABSTRACT. Let p # 1 be a positive real number. We determine all real num-
bers a = a(p) and B = B(p) such that the inequalities

x
[1 = e=AaP]l/e < ——1——/ et gt < [1 — emoa” |/
r1+1/p) Jo
are valid for all z > 0. And, we determine all real numbers a and b such that
oo ,—1
—log(l—e™ ") < / eT dt < —log(1l — %)
x

hold for all z > 0.

1. INTRODUCTION

In 1955, J. T. Chu [1] presented sharp upper and lower bounds for the error
function erf(z) = \/iF I e~ dt. He proved that the inequalities

(1.1) [1—e ™ |V2 < erf(z) < [1 — e*® /2
are valid for all x > 0 if and only if 0 < r < 1 and s > 4/w. The right-hand
inequality of (1.1) (with s = 4/7) was proved independently by J. D. Williams
(1946) and G. Pélya (1949); see [1].

An interesting survey on inequalities involving the complementary error function

2

erfc(z) = 72_; [° et dt and related functions is given in [4, pp. 177-181]. In
particular, one can find inequalities for Mills’ ratio e /2 > e~t*/2 dt, derived by
several authors.

In 1959, W. Gautschi (3] provided upper and lower bounds for the more general
expression

¥4 o y4
(1.2) Iy(z) =€” / e ¥ dt.
T
He established that the double-inequality
1
(1.3) Sl@” +2)V7 —a] < I(2) < p[(a” +1/cp)'7 — 1]

(with ¢, = [['(1 + 1/p)}?/®=1) holds for all real numbers p > 1 and = > 0. It has
been pointed out in [3] that the integral in (1.2) for p = 3 occurs in heat transfer
problems, and for p = 4 in the study of electrical discharge through gases. We note
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that the integral [° e~ dt can be expressed in terms of the incomplete gamma
function

[e o]
F(a,:c)=/ t* e tdt,
T

/ et dt = 11“ (l,xl’) )
z p ¥4

Gautschi [3] showed that the inequalities (1.3) can be used to derive bounds for the
exponential integral E;(z) = I'(0, z). Indeed, if p tends to oo, then (1.3) leads to

(1.4) -;—log (1 + %) < & By(z) < log (1 + %) (0 < o < o0).

namely,

It is the main purpose of this paper to establish new inequalities for f: et dt and
f:o e~ dt. In Section 2 we present sharp upper and lower bounds for

-——1——/me‘tpdt and ;/Ooe_tpdt
(1 +1/p) Jo (1 +1/p) Ja ’

which are valid not only for p > 1, but also for p € (0,1). In particular, we obtain an
extension of Chu’s double-inequality (1.1). Moreover, we provide sharp inequalities
for the exponential integral E;(z). Finally, in Section 3 we compare our bounds
with those given in (1.3) and (1.4).

2. MAIN RESULTS

First, we generalize the inequalities (1.1).

Theorem 1. Let p # 1 be a positive real number, and let o = a(p) and B8 = B(p)
be given by

a=1 p=[(1+1/p]|™? f0<p<l,
and
a=[1+1/p]™? p=1, ifp>1

Then we have for all positive real x:

1 /E _tP —_ P 1
—_— e dt< 1—6 e /p.
T+ 1/p) Jo | ]

Proof. We have to show that the functions

(2.1) [1—e B |1/P <

Fp(z) = /w e ¥ dt — L(1+1/p)[1- e"”p]l/p
0
and
Gp(z) = "/0 e’ dt+T(1+1/p)l—e /P (a=[T(1+1/p)]"P)

are both positive on (0,0), if p > 1, and are both negative on (0,00), if 0 < p < 1.
First, we determine the sign of Fj,(z). Differentiation yields

zP ___8_
Oz

€ p(2) =1 -T(1+1/p)[L(z(x))] P77,
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where

L(z) = (z —1)/log(z) and z(z)=e"".

Setting fp(z) = aiF (x ) we obtain
(22) %fp(w) P20+ p) (L) 2P a(0) £ L) st
Since
%L(z) — [log(z) — 1+ 1/4]/(log(z))2 >0  (0<z#1)
and

d
%z(:c) <0,

we conclude from (2.2) that

%fp(m) <0, ifp>1,
and
0 .
%f,,(:c)>0, if0<p<l.
If p > 1, then we have
fp(0)=1-T(1+1/p) >0 and zli_)n;ofp(m) =—

which implies that there exists a number zo > 0 such that f,(z) > 0 for z € (0, zo)
and f,(z) < 0 for z € (z0,0). Hence, the function z — Fp(z) is strictly increasing
on [0, o] and strictly decreasing on [zg,00). Since F,(0) = limg_,o0 Fp(z) = 0, we
obtain Fp(x) > 0 for all z > 0.

If 0 < p < 1, then we have

fp(0)=1-T(1+1/p) <0 and zan;o fp(z) =1

This implies that there exists a number z; > 0 such that z — F,(z) is strictly de-
creasing on [0, z1] and strictly increasing on [z1,00). From F},(0) = limg_, o Fp(z) =
0 we conclude that F,(z) < 0 for all z > 0.

Next, we consider Gp(z). Differentiation leads to

(23) ezp'éa;Gp(SC) =1+ (y(l‘))l_l/a[L(y(x))](l_p)/p,

where
L(y) = (y—1)/log(y) and y(z)=e "

with a = a(p) = [['(1 + 1/p)]™P. To determine the sign of 2 Gp(z) we need the
inequalities

1 P 1
(24) 0<(1 —(IT)-)—*—<'§ for 0 < p#1.

The left-hand inequality of (2.4) is obviously true. A simple calculation reveals
that the second inequality of (2.4) is equivalent to

(2.5) 1- 1) [F(a:+1) - ("’H

T
) ]>0 for 0 <z #1.
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To establish (2.5) we define for z > 0:

g(z) =logl'(z + 1) —:clogx_;l.

Then we have

d? d T+2 o 1 1
Wg(:c)—azb(:c-i-l)— (z+1)2 _;(w—i—n)? 41

< /°° L —_ L =0
1 (@+)? T+l
Thus, g is strictly concave on [0,00). Since g(0) = g(1) = 0, we conclude that g is

positive on (0,1) and negative on (1,00). This implies (2.5).
Let 0 < 7 < 1/2; we define for y € (0, 1):

he(y) = y" log(y)/(y — 1).

Then we get

(v - 1)2y1-’§5m(y) = [(r— 1)y — r]log(y) +y 1

= ¢r(y), say.
Since

Y2
it follows that ¢, is strictly convex on (0, i%) and strictly concave on (7=, 1).
From limy_,g ¢, (y) = oo,

6_2 ()_r—l o
ayzso'f'y_ y 1—7' 9

B 92
er(1) = 3—ysor(y)|y=1 =0 and @wr(y)lyﬂ =2r-1<0,

we conclude that there exists a number yo € (0, 1) such that ¢, is positive on (0, yo)
and negative on (yo, 1). This implies that y — h,(y) is strictly increasing on (0, yo)
and strictly decreasing on (yo,1). Since lim,_,o A,(y) = 0 and limy_,; A, (y) = 1, we
conclude that there exists a number y; € (0,1) such that h.(y) < 1 for y € (0,31)
and h,(y) > 1 for y € (y1,1). The function y(z) = e~%" is strictly decreasing on
[0,00). Since y(0) = 1 and lim,_,o y(z) = 0, there exists a number z* > 0 such
that

y1 <y(z) <1 forz e (0,z"),
and
0<ylz) <y forze (z%,00).

Hence, we have:
If 0 < z < z*, then h.(y(z)) > 1, and, if 2* < =, then A, (y(z)) < 1. We set
r=(1- Rlp_));%; then we obtain from (2.3) that

o O p/(p—1)
() = |1+ 5.Gy(o)
Therefore, if p > 1, then

%Gp(m) >0 forze (0,z*) and %Gp(x) <0 forz € (z",00);
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and, if 0 < p < 1, then

2G () <0 forz e (0,z*) and —a—G () >0 forzx € (z",00)

bz " ’ oz P ')
Since Gp(0) = limg_,o0 Gp(z) = 0, we conclude that

Gp(z) >0 for z € (0,00), if p> 1,
and
Gp(z) <0 forz e (0,00), f0<p<1.

This completes the proof of Theorem 1. O

Remark. 1t is natural to ask whether the double-inequality (2.1) can be refined by
replacing « by a positive number which is smaller than

1, ifo<p<l,
C(1+1/p)]7?, ifp>1,

or by replacing 8 by a number which is greater than

max{1, [T(1+1/p)] "} = {

WMqu+umrﬂ={?“+1”Wﬂ §2§€<L

We show that the answer is “no”! Let @ > 0 be a real number such that the
right-hand inequality of (2.1) holds for all > 0. This implies that the function

Fy(z) = /0 e dt —T(1+1/p)[1 — e~ |V/P

is negative on (0, 00). Since F,(0) = 0, we obtain
0
oz
which leads to @ > [['(1 + 1/p)]7P. If @ € (0,1), then we conclude from

Fp(@)lo=o = 1 - &*/*T(1+1/p) <0,

. oop 0
lim e ng(:c) = -0

that there exists a number T > 0 such that & — F,(z) is negative and strictly
decreasing on [T, 00). This contradicts limg . Fp(z) = 0. Thus, we have o >
max{1, [['(1+1/p)]7"}.

Next, we suppose that § > 0 is a real number such that the first inequality of
(2.1) is valid for all > 0. This implies

5&@)=-—1;e*pﬁ+dx1+1nnu-eﬂ%qu<0

for all z > 0. Since 5’,,(0) = 0, we obtain

6 = 1/
a—pr(x)lm=o = ﬂ 7’1“(1 -+ l/p) - 1 S O,
which yields 8 < [['(1+1/p)]7?. If 8 > 1, then we get

. » O
lim e —
T—00 i

Gyp(z) = 1.
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This implies that there exists a number Z > 0 such that z +— ép(x) is negative and

strictly decreasing on [Z,00). This contradicts lim,_,. Gp(x) = 0. Hence, we get
f < min{L, [[(1 +1/p)] P}

As an immediate consequence of Theorem 1, the Remark, and the representation
[ e dt =T(1+1/p) — [, e~* dt, we obtain the following sharp bounds for the
ratio [ e~ dt/ [ et dt.

Corollary. Let p # 1 be a positive real number. The inequalities

]. © tP P
_ Pt <1—[1—e PP
Ir'(1+1/p) /z ¢ <i-ltme]

are valid for all positive x if and only if
a>max{1,[I'(1+1/p)]P} and 0<B<min{l,['(1+1/p)] 7P}
Now, we provide new upper and lower bounds for the exponential integral
Ei(z) = [° <" dt.
Theorem 2. The inequalities
(2.7 —log(1 —e™%®) < Ey(z) < —log(1 — e~ %)
are valid for all positive real x if and only if
a>eC and 0<b<1,

where C = 0.5772... is Euler’s constant.

(2.6) 1—[1—e /P <

Proof. The function t — —log(1 — e~ **) (z > 0) is strictly decreasing on (0,00).
Therefore, it suffices to prove (2.7) with a = ¢“ and b = 1. Let p > 1; from (2.6)
with o = [['(1+ 1/p)]7?, B =1, and z instead of 2P, we obtain

D(1/p)[1 — (1 —e )P < /oo t71F Pt dt < T(1/p)[1 — (1 — e %)Y/7].

If p tends to oo, then we get
—log(1 —e™) < By () < —log(l —e™%)
with a = €.
We assume that there exists a real number b > 1 such that
Ei(z) < —log(1 —e™*)
holds for all z > 0. Since
eEr(z) =Y (1) k-1)lzF+ru(z)  (2>0)
k=1
with
7 (2)] < ™1
(see [2, pp. 673—674]), we obtain
(2.8) e*zlog(l —e %) < —1 — 2ry (z).
If we let = tend to oo, then inequality (2.8) implies 0 < —1. Hence, we have b < 1.
Using the representation

Ei(z) = —C - log(z) — Z(—l)"nm'—r; (x>0)
n=1
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(see [2, p. 674]), we conclude from the left-hand inequality of (2.7) that

oo
log 1—:—2_—05 <-C- Z(“
n=1
If z tends to 0, then we obtain
log(1/a) < —C or a>e°.
The proof of Theorem 2 is complete. O
3. CONCLUDING REMARKS

In the final part of this paper we want to compare the bounds for the integrals
[Ze?dt (p>1)and [° < " dt which are given in (1.3), (2.6) and (1.4), (2.7),
respectively. First, we con81der the bounds for fz e ¥ dt. We define

—zP

Ry(w) = T(1+1/p){1 = [1 — e™>" |/} — Z—[(a? +2)1/% — a]
with

=[T1+1/p)® and p>1.
Then we have

R,(0) =T(1+41/p) — 2717 >,

lim R,(z) =0 and hm e’ —Rp(m) =1

This implies
R,(z) >0 for all sufficiently small z > 0,

and

R,(z) <0 for all sufficiently large z.
Let

Sy(z) = T(1+ 1/p){1 — [1 — e~="|HP} — ce=2"[(2P + 1/c) /P — g
with
=[D(1+1/p)/®V and p>1.
From S,(0) =0,
tim 5,(2) = [0+ 1/p)/0 (1 +1/p) < 0
mlgl;S (z)=0 and mli’ngoe’”pga—gsp(x) = —00,

we conclude
Sp(z) < 0 for all sufficiently small z > 0,
and
Sp(z) >0 for all sufficiently large z.

Hence, for small z > 0 the bounds for f et dt (p > 1) which are given in (2.6)
are better than those presented in (1.3), whereas for large values of = the opposite
is true.
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Next, we compare the bounds for the exponential integral Ey(z). First, we show
that for all z > 0 the upper bound given in (1.4) is better than the upper bound
given in (2.7). This means, we have to prove that

(3.1) e “log(l+1/z) < —log(l —e™7)
for all z > 0. Using the extended Bernoulli inequality
1+2)!>14+tz  (E>1z>-1)

(see [4, p. 34]), and the elementary inequality e > 1+ ¢ (t # 0), we obtain for
>0

1\ e 1 1
> = -
<1+e””—1> _1+ew—1 1+1—e—w >1+x’
which leads immediately to (3.1).
Finally, we compare the lower bounds for E;(z) given in (2.7) and (1.4). Let
—x

T(z) = S—log(1 + 2/z) + log(1 — e~%%)

2
with @ = €. Since lim,_,0T(z) = —o0o, we obtain T'(z) < 0 for all sufficiently
small z. And, from

d
lim T(z) =0 and lim e‘“”d—mT(x) = —00,

we conclude that T'(z) > 0 for all sufficiently large z. Thus, for small z > 0 the
lower bound for E;(x) which is given in (2.7) is better than the bound given in
(1.4), while for large values of z the latter is better.
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