
MATHEMATICS OF COMPUTATION 
Volume 66, Number 218, April 1997, Pages 771-778 
S 0025-5718(97)00814-4 

ON SOME INEQUALITIES FOR THE INCOMPLETE 
GAMMA FUNCTION 

HORST ALZER 

ABSTRACT. Let p 7? 1 be a positive real number. We determine all real num- 
bers o = o(p) and B = ,(p) such that the inequalities 

[1-e1xP]l/P < r( 2 + 1/)I e t dt < [1 -?8x ]I/p 

are valid for all x > 0. And, we determine all real numbers a and b such that 
00 e-t 

-log(1-e -ax) < | dt <-log(1 - e-bx) 

hold for all x > 0. 

1. INTRODUCTION 

In 1955, J. T. Chu [1] presented sharp upper and lower bounds for the error 
function erf(x) = 2 f0 et2 dt. He proved that the inequalities 

(1.1) [1- -rX2]1/2 < erf(x) < [1 - e8x2]1/2 

are valid for all x > 0 if and only if 0 < r < 1 and s > 4/ir. The right-hand 
inequality of (1.1) (with s = 4/ir) was proved independently by J. D. Williams 
(1946) and G. Polya (1949); see [1]. 

An interesting survey on inequalities involving the complementary error function 
erfc(x) = a fX7 e-2 dt and related functions is given in [4, pp. 177-181]. In 

particular, one can find inequalities for Mills' ratio ex 2/2 f e-t 2/2 dt, derived by 
several authors. 

In 1959, W. Gautschi [3] provided upper and lower bounds for the more general 
expression 

(1.2) I(x) = exP j e-tP dt. 

He established that the double-inequality 
1 

(1.3) - [(xP + 2)1/P - x] < Ip(x) < cp[(xP + 1/cp)/P -x] 2 

(with cp = [1(1 + ?/p)]P/(P-')) holds for all real numbers p > 1 and x > 0. It has 
been pointed out in [3] that the integral in (1.2) for p = 3 occurs in heat transfer 
problems, and for p = 4 in the study of electrical discharge through gases. We note 
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that the integral f7 e-'p dt can be expressed in terms of the incomplete gamma 
function 

r(a,x) ta-le-tdt, 

namely, 

j et dt = -r ( x) 

Gautschi [3] showed that the inequalities (1.3) can be used to derive bounds for the 
exponential integral El(x) = r(O, x). Indeed, if p tends to ox, then (1.3) leads to 

(1.4) 2 log (1 +) < exEl(x) < log (1 + ) (O < x < oo). 

It is the main purpose of this paper to establish new inequalities for x e-tP dt and 

fx4 e-P dt. In Section 2 we present sharp upper and lower bounds for 

1(l + l/ ) 1 e-t dt and F(l/p) j e-tP dt, 

which are valid not only for p > 1, but also for p E (0, 1). In particular, we obtain an 
extension of Chu's double-inequality (1.1). Moreover, we provide sharp inequalities 
for the exponential integral El (x). Finally, in Section 3 we compare our bounds 
with those given in (1.3) and (1.4). 

2. MAIN RESULTS 

First, we generalize the inequalities (1.1). 

Theorem 1. Let p =A 1 be a positive real number, and let ac = a(p) and / = /3(p) 
be given by 

a = 11 o = pi( + i/gpl]P if O < p < 1 

and 

a = pi( + i/g)-P, o = il if p > i. 
Then we have for all positive real x: 

(2.1) [1 - e-ox ]I/P < r(i i/p) e-tP dt < [1 - e-xP]l/P. 

Proof. We have to show that the functions 
x 

Fp(x)= e-t dt - r(i + l/p)[l -xp ]l/P 

and 

Gp(x) =-J e-t dt + r(( + l/p)[l - eaP Il/P (a = [F(1 + l/p)] ) 

are both positive on (0, oo), if p > 1, and are both negative on (0, oo), if 0 < p < 1. 
First, we determine the sign of Fp(x). Differentiation yields 

ex - Fp(x) = 1 -r( +1 lp)[L(z(x))?P)/P ax 
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where 

L(z)=(z-l)/log(z) and z(x)=e-x'. 

Setting fp(x) = exP a Fp(x), we obtain 

(2.2) -fp (x) = Fr(i + l/p)(L(z(x)))-2+l/P d z(x) d L(z)lz=z(x). ax pTX d 

Since 

d L(z) = [log(z) - 1 + 1/z]/(log(z))2 > 0 (0 < z 7 1) dz 
and 

+z(x) < 0, 
we conclude from (2.2) that 

a fp(x) <0 ifp>l, 

and 

0 fp(x)>0, if 0<p<1. 

If p> 1, then we have 

fp(O) = 1-Fr(i + /p) > 0 and lim fp(x) =-00, 
X-4 00 

which implies that there exists a number xo > 0 such that fp(x) > 0 for x E (0, xo) 
and fp(x) < 0 for x E (xo, ox). Hence, the function x >-+ Fp(x) is strictly increasing 
on [0, xo] and strictly decreasing on [xo, ox). Since Fp(O) = limX+O Fp(x) = 0, we 
obtain Fp(x) > 0 for all x > 0. 

If 0 < p < 1, then we have 

fp (O) = 1-Fr( + i/p) < 0 and lim fp (x)=1. 
x-+oo 

This implies that there exists a number xl > 0 such that x ~-4 Fp(x) is strictly de- 
creasing on [0, xl] and strictly increasing on [xl, ox). From Fp(O) = limx,oo Fp(x) = 

0 we conclude that Fp(x) < 0 for all x > 0. 
Next, we consider Gp(x). Differentiation leads to 

(2.3) eX -GP(x) = -1 + (y(x))1/a [L(y(x))](1P)/P, Ox 
where 

L(y)=(y-1)/ log(y) and y(x) = e-aXP 

with a = a(p) = [F(1 ? l/p)]-P. To determine the sign of 9 Gp(x) we need the 
inequalities 

(2.4) 0< (1- >)) 1 < forO<p1l. 

The left-hand inequality of (2.4) is obviously true. A simple calculation reveals 
that the second inequality of (2.4) is equivalent to 

(2.5) (I - x) r(x + 1) - (2 >) 0 for O < x #8 1. 
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To establish (2.5) we define for x > 0: 

g(x) = logF(x + 1) - xlog 
x 

2 
2 

Then we have 

d2 ~ d x?2 _ 1 
2 2g(X) = dzO(X + 1) (X + 1)2 n- (:1 + n) dx 9Xdx (X1)x?l2 (x n)2 x?1 

[00 dt 1 
<I (X+t)2 x+1 

Thus, g is strictly concave on [0, oo). Since g(0) = g(1) = 0, we conclude that g is 
positive on (0, 1) and negative on (1, ox). This implies (2.5). 

Let 0 < r < 1/2; we define for y E (0,1): 

hr (y) = yr log(y)/(y- 1). 

Then we get 

(y- 1)2y1-r 
a 

hr(y) = [(r - l)y -r] log(y) + y -1 

= (Pr (Y), say. 

Since 

a 2 OrY) 
y 2 [ I -r] 

it follows that (Pr is strictly convex on (0, Irr) and strictly concave on (Irr,l). 

From limyo (Pr(Y) = 00, 

SOr(l) = gOr(Y)jy=l = 0 and 
2 
2r(Y)ly=l = 2r -1 < 0, 

we conclude that there exists a number yo E (0, 1) such that (Pr is positive on (0, yo) 
and negative on (yo, 1). This implies that y F-- hr (y) is strictly increasing on (0, yo) 
and strictly decreasing on (yo, 1). Since limy-o hr(y) = 0 and limy-- hr(y) = 1, we 
conclude that there exists a number Yi E (0, 1) such that hr(y) < 1 for y E (0, yi) 
and hr(y) > 1 for y E (yi, 1). The function y(x) = e-axP is strictly decreasing on 
[0, oo). Since y(O) = 1 and lim,oO y(x) = 0, there exists a number x* > 0 such 
that 

Yi < y(x) < 1 for x E (0,x*), 

and 

0 < y(x) < y, for x E (x*, oo). 

Hence, we have: 
If 0 < x < x*, then hr(y(X)) > 1, and, if x* < x, then hr(y(X)) < 1. We set 

r = (1- )p-' then we obtain from (2.3) that 
a(p)~ ~ ~ p/(-l 

hr(y(X))= ? + exP Gp(x) 

Therefore, if p > 1, then 

a- Gp(x) > 0 for x E (O, x and -Gp(x) < 0 for x E (x*, oo); 
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and, if 0 < p < 1, then 

,-Gp(x) <0 forxE (0,x*) and yGp(x) >0 forxe (x*,oo). 

Since Gp(O) = limx 0oo Gp(x) = 0, we conclude that 

Gp (x) >O0 for xE (O, oo), if p > 1, 

and 

Gp(x) <O0 for xE (O,oo0), if O < p<1 

This completes the proof of Theorem 1. 0 

Remark. It is natural to ask whether the double-inequality (2.1) can be refined by 
replacing ae by a positive number which is smaller than 

max 1,[IFI +11{[F( = 1 1 /), ifo0< p< 1 

max{1, [F(1 ? l/p)]P} = ?[F(I + i/p)]-P, if p > 1, 

or by replacing f by a number which is greater than 

min{1, [F(1 + l/p)]-P} = {[i( + 1/p)]P f O < p <1 

We show that the answer is "no"! Let ae > 0 be a real number such that the 
right-hand inequality of (2.1) holds for all x > 0. This implies that the function 

x 

Fp(x) = e-t dt- r(i + l/p)[l - e-xP]l/p 

is negative on (0, oo). Since Fp(0) = 0, we obtain 

ax Fp(x)lx=o = 1 - a'/Pr(i + l/p) < O, 

which leads to ag > [r(i + i/p)i-P. If ae E (0,1), then we conclude from 

lim eX -Fp (x) =-oo 

that there exists a number x > 0 such that x z-4 Fp (x) is negative and strictly 
decreasing on [x, oo). This contradicts limxoo Fp(x) = 0. Thus, we have a > 
max{1, [F(1 + 1/p)]P}. 

Next, we suppose that fi> 0 is a real number such that the first inequality of 
(2.1) is valid for all x > 0. This implies 

rx 
Gp(x) = - e-t dt+ r(l + l/p)[l - e-/xP]l/p < O 

for all x > 0. Since Gp(O) = 0, we obtain 

a _ 1 
,3 = /pr(1 + l/p) - 1 < O, 

which yields f ? [F(1 + 1/p)]-P. If 3 > 1, then we get 
p a 

lim eX P-Gp(x) =-1. 
X-4oo Ax 
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This implies that there exists a number x > 0 such that x H-* Gp(x) is negative and 
strictly decreasing on [x, oo). This contradicts lim,oc Gp, (x) = 0. Hence, we get 
3 < min{l, [r(1 ? l/p)]P}. 

As an immediate consequence of Theorem 1, the Remark, and the representation 
fx4_ e- dt = r( + l/p) - f e-tP dt, we obtain the following sharp bounds for the 
ratio f7? e-tP dt/ f? etP dt. 

Corollary. Let p =8 1 be a positive real number. The inequalities 

(2.6) 1 - [1 - e-(xp]'I/P < 1(?/)je-tP dt < 1 - [1 - e/38xP 1/P (2.6) ~~~~~r(i + i/p) 
are valid for all positive x if and only if 

a > max{1, [F(1 l/p)]-P} and 0 < d < min{l, [i(1 ? l/p)]P}. 
Now, we provide new upper and lower bounds for the exponential integral 

EI(x) = f e-t dt. 
Theorem 2. The inequalities 

(2.7) - log(l- -ax) < El (x) < - log(l - e-bx) 

are valid for all positive real x if and only if 

a>ec and O<b<1, 

where C = 0.5772... is Euler's constant. 

Proof. The function t X-* - log(l -e-tx) (x > 0) is strictly decreasing on (0, oc). 
Therefore, it suffices to prove (2.7) with a = ec and b = 1. Let p > 1; from (2.6) 
with ae = [F(1+ ?/p)]iP, f = 1, and x instead of xP, we obtain 

r(i/p)[1 - (1- e- x)l/Pi < j t-+l/Pe-t dt < r(l/p)[l - (1 - ex)/P]. 

If p tends to oo, then we get 

-log(l- -ax) < El(x) < -log(l - e-x) 
with a = e0. 

We assume that there exists a real number b > 1 such that 

El (x) < -log(l - e-bx 

holds for all x > 0. Since 
n 

exEi(x) = Z(_)k-l(k-1)! x-k + r (x) (x > 0) 
k=l 

with 

lrn (x) | < n! X-n-I 

(see [2, pp. 673-674]), we obtain 

(2.8) exx log(l -bx) K<-1-xxr (x). 

If we let x tend to oo, then inequality (2.8) implies 0 < -1. Hence, we have b < 1. 
Using the representation 

El(x) = -C-log(x) - (_ _)n x (x > 0) 
n=l 
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(see [2, p. 674]), we conclude from the left-hand inequality of (2.7) that 

log 1j-ax ?-Cc-Z(_)n 
X 

n=1 

If x tends to 0, then we obtain 

log(l/a) K-C or a > ec. 

The proof of Theorem 2 is complete. C 

3. CONCLUDING REMARKS 

In the final part of this paper we want to compare the bounds for the integrals 
f e-etP dt (p > 1) and f7 ,jt dt which are given in (1.3), (2.6) and (1.4), (2.7), 
respectively. First, we consider the bounds for f? e-tP dt. We define 

Rp(x) = +(1 
? 

l/p){l 
- 

[1 
- 

e-xP]l/P}- [(xP + 2)l/P 
- 

x] 2 
with 

a = [F(i?+/p)]-P and p > 1. 

Then we have 

Rp(O) = r(i + /p) - 2-1+l/P > 0, 

lim Rp(x) = 0 and lim ex 
a 

Rp(x) = 1. 
x->_*00 x-_+00 a 

This implies 

Rp(x) > 0 for all sufficiently small x > 0, 

and 

Rp(x) < 0 for all sufficiently large x. 

Let 

Sp(x) = 7(l + l/p){l - [1 - e-xp]l/P} - cexp [(xP + 1/c)l/P - x] 

with 

c = [7(l+ l/p)]P/(P-1) and p > 1. 

FRom sp(0) = 0, 

lim -Sp(x) = [1(l + l/p)]p/(P-1) - F(1 + l/p) < O, 
x-*0 ax 

lim Sp(x) = 0 and lim exp 
a 

Sp(x) =- , 
X-*0O X-*OO a 

we conclude 

Sp(x) < 0 for all sufficiently small x > 0, 

and 

Sp(x) > 0 for all sufficiently large x. 

Hence, for small x > 0 the bounds for f)7 e-tp dt (p > 1) which are given in (2.6) 
are better than those presented in (1.3), whereas for large values of x the opposite 
is true. 
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Next, we compare the bounds for the exponential integral E1 (x). First, we show 
that for all x > 0 the upper bound given in (1.4) is better than the upper bound 
given in (2.7). This means, we have to prove that 

(3.1) e-x log(1 + 1/x) < - log(1 - e-) 

for all x > 0. Using the extended Bernoulli inequality 

(1 + z)t > 1 + tz (t > 1;z >-1) 

(see [4, p. 34]), and the elementary inequality et > 1 + t (t + 0), we obtain for 
x > 0: 

( 1 Vexl 
1 ? > 1 + ) ? 1=+1? > 1 + 

which leads immediately to (3.1). 
Finally, we compare the lower bounds for E1(x) given in (2.7) and (1.4). Let 

T(x) = 2 log(1 + 2/x) + log(1 - e-ax) 

with a = ec. Since limx,o T(x) = -oc, we obtain T(x) < 0 for all sufficiently 
small x. And, from 

lim T(x) = 0 and lim eax T(x) =d -0o 
x-0oo x-0oo dx 

we conclude that T(x) > 0 for all sufficiently large x. Thus, for small x > 0 the 
lower bound for E1(x) which is given in (2.7) is better than the bound given in 
(1.4), while for large values of x the latter is better. 
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